
PyAuxetic
Release 2.0.1

The PyAuxetic Team

Apr 04, 2023

CONTENTS:

1 Getting Started 3

2 Unit Cell Library 23

3 API Reference 27

4 Contribute to the Software 45

5 Licensing 47

6 The PyAuxetic Team 49

Python Module Index 51

Index 53

i

ii

PyAuxetic, Release 2.0.1

PyAuxetic is a Python plugin and library for modeling, analyzing, and post-processing auxetic structures in Abaqus.
Its main features are:

• Free: The software is provided free of charge for non-commercial use. We use the GPL license that ensures that
all derivative software are also free and open source.

• Open Source: The entire code and documentation is open source and available on GitHub.

• Simple GUI: The software has a simple and elegant GUI that interfaces to Abaqus as a plugin.

• Powerful API: The software has powerfull API that can be used for scripting. All GUI functionality (and more)
are available from the API. Scripting makes the results highly reproducible and the scripts can be archived.

• Extensible: The software is built on a solid object-oriented framework, making it easily extensible. New struc-
tures and output types can be added with speed and reliability.

• Thorough Documentation: We believe in documenting our methods. You can find in-depth documents about
all aspects of the software in our online documentation.

CONTENTS: 1

PyAuxetic, Release 2.0.1

2 CONTENTS:

CHAPTER

ONE

GETTING STARTED

In this section you will learn how to install and use utilize the plugin using the graphical user interface (GUI) and the
application programming interface (API).

1.1 Installation and Usage

The software can be used as both a plugin to the Abaqus software or as a library for developing Abaqus scripts. Instal-
lation for either mode is very straightforward.

1.1.1 Installing as a Plugin

To install the software as a plugin to Abaqus, follow these steps:
• Obtain a copy of the software from Github. You can either clone/fork the repository or download as a zip.

• Copy the software to you Abaqus plugins folder. This is generally in C:\SIMULIA\CAE\plugins\
VERSION, where VERSION refers to abaqus version, e.g. 2021.

• Restart Abaqus.

• The plugin can now be seen in the plugins menu (Fig. 1.1).

Fig. 1.1: Installed plugin in the plugins menu.

The plugin can now be opened and used. Throughout the manual, there are sections describing how to use the plugin
GUI.

3

PyAuxetic, Release 2.0.1

1.1.2 Installing as a Library

The software has an API which can be used for writing Python scripts for Abaqus. In order to import the software as a
library, simply add the path to the plugin to the search path in your script:

import sys
sys.path.append(r'C:\SIMULIA\CAE\plugins\2017\pyauxetic')

Now you can import the library using import pyauxetic. Throughout the manual, there are sections describing how
to use the API to define objects about various parts of the modeling and analysis process. These are then passed to the
main API functions. Refer to examples for more information.

1.1.3 Updating the Software

In order to update the software, simply delete the old files and replace them with the new copy of the software.

1.2 Selecting a Structure

The first step for using the software is to select the structure which is to be modeled. Generally, three different questions
must be answered regarding the structure:

• What is the basic unit cell used throughout the structure?

• Do the parameters of the unit cell change throughout the structure?

• Does the structure undergo additional transformations?

These questions and their possible answers are discussed in the following sections.

1.3 Defining Unit Cells

1.3.1 Introduction

In the context of this software, the unit cell is defined as the smallest repeating unit used to create a structure.

In order to define a unit cell, its geometrical dimensions must be input. A unit cell may be definable using multiple
methods, each called a variant, but these only differ in their input values, not the resulting geometry. Henceforth, a set
of the mentioned values are refered to a unit cell parameters.

There are two considerations when defining unit cell parameters:

1. What variant of the unit cell is being defined? Each variant has differnt parameters and care must be
taken not to mistake them for each other. The desired variant can easily be selected both in the GUI
and the API.

2. How many unit cells must be defined? For a single homogenous structure only a single set of unit cell
parameters is required. However, there are two situations that call for a list of unit cell parameters to
be defined:

• Multiple homogenous structures are being created as a consecutively as a batch analysis (See Batch
Modeling).

• Although a structure can only be made of instances of a single unit cell, homogeneity is not required
which means that many different unit cells can be defined for different parts of a structure (See As-
sembling the Unit Cells).

4 Chapter 1. Getting Started

PyAuxetic, Release 2.0.1

1.3.2 Defining Unit Cells using the GUI

The first step is to specify the basic structure information. These include:

• Unit Cell: Determines the unit cell used to create the structure.

• Unit Cell Variant: A unit cell may be definable using multiple methods which are listed here. The choice of
Unit Cell and Unit Cell Variant determines the unit cell parameters which must be input in the future.

• Structure Type: Discussed in #TODO.

• Modeling Mode: Three choices are available: Uniform (Single), Uniform (Batch), and Non-Uniform. The first
calls for a single set of unit cell parameters and the other two require a list of unit cell parameters.

Fig. 1.2: Basic structure information in the modeling tab.

After a combination of parameters are specified in Basic Structure Information, the Structure Parameters frame is
automatically activated for that combination. Contents of this frame depend on the structure, but can include the
following:

• Structure Name/Prefix: The name given to the structure, or the prefix used for a batch analysis.

• Loading Direction: Discussed in Assembling the Unit Cells.

• Unit Cell Parameters Frame: A button which opens a window in which unit cell parameters can be specified.
For non-uniform structures, the window also asks for the Structure Map (See Assembling the Unit Cells). This
frame also has any possible parameters needed for the selected Structure Type. This is discussed in length in
#TODO.

• Number of Unit Cells Frame: This frame is only shown for uniform (single and batch) structures. Depending
on the unit cell, number of unit cells in the x, y, and z direction can be specifed.

1.3. Defining Unit Cells 5

PyAuxetic, Release 2.0.1

Title of the push button described above changes based on Modeling Mode. Regardless, it opens a new pop-up window
which asks for the required parameters.

For Uniform structures, the window includes only a table asking for the unit cell parameters needed for the selected
unit cell variant. Unit cell ID is automatically set to 1. A sample window is shown in Fig. 1.3.

Fig. 1.3: Structure Parameters pop-up window for a uniform (single) structure.

If Uniform (Batch) or Non-Uniform modeling modes are selected, the pop-up window asks for a list of unit cell param-
eters in tabular format. Here, each row has a unit cell ID, which is used as analysis ID for batch modeling. Use of unit
cell ID in non-uniform structures is discussed in Assembling the Unit Cells. A sample window is shown in Fig. 1.4.

Fig. 1.4: Structure Parameters pop-up window for a uniform (batch) structure.

6 Chapter 1. Getting Started

PyAuxetic, Release 2.0.1

1.3.3 Defining Unit Cells using the API

The mentioned options and parameters can also be specifed using the API. The first variable is structure_type, which
simultaneously selects the Unit Cell Name and its Structure Type. For example:

Define a Re-Entrant 2D unit cell for a planar shell structure.
structure_type = 'reentrant2d_planar_shell'

Unit cell parameters are defined as subclasses of namedtuple, which are defined in classes.
auxetic_unit_cell_params. For example, the Re-Entrant 2D unit cell can be defined using three different
subclasses of namedtuple, namely:

• classes.auxetic_unit_cell_params.Reentrant2DUcpFull

• classes.auxetic_unit_cell_params.Reentrant2DUcpBox

• classes.auxetic_unit_cell_params.Reentrant2DUcpSimple

The geometrical significance of these definition methods are explained in depth in #TODO. The API expects one of
these or a homogenous Iterable of one of these depending on how many are necessary. It then makes sure that the list
includes only one definition method and that it is relevant to the selected unit cell. Two examples are shown below:

First, the necessary libraries must be imported:

Import the necessary libraries:
from pyauxetic.classes.auxetic_unit_cell_params import *
from pyauxetic.classes.auxetic_structure_params import *

A single set of unit cell parameters:
Method 1:
unit_cell_params = Reentrant2DUcpBox(

id = 1 ,
extrusion_depth = 5 ,
horz_bounding_box = 20 ,
vert_bounding_box = 24 ,
vert_strut_thickness = 2 ,
diag_strut_thickness = 1.5,
diag_strut_angle = 70
)

Method 2:
unit_cell_params = Reentrant2DUcpBox(1, 5, 20, 24, 2, 1.5, 70)

A list of unit cell parameters:
Define three unit cells for a non-uniform structure or a batch of uniform structures.
Note that the first argument (id) is unique for each unit cell.
unit_cell_params_list = []
(id, extrusion_depth, horz_bounding_box, vert_bounding_box,
vert_strut_thickness, diag_strut_thickness, diag_strut_angle)
unit_cell_params_list.append(Reentrant2DUcpBox(1, 5, 20, 24, 3.0, 1.5, 60))
unit_cell_params_list.append(Reentrant2DUcpBox(2, 5, 20, 24, 3.0, 1.5, 60))
unit_cell_params_list.append(Reentrant2DUcpBox(3, 5, 20, 24, 2.0, 1.5, 60))

1.3. Defining Unit Cells 7

PyAuxetic, Release 2.0.1

1.4 Assembling the Unit Cells

The next step is to assemble the defined unit cells. The assembly method depends on the choice of unit cell, but the
following general steps apply:

1. Distribution of the unti cells is defined in a table named Structure Map which looks like Fig. 1.5.

• For uniform structures, there is only one unit cell with a known ID, usually 1, which is
distributed throughout the structure. The number of unit cells in different directions is
used to create the Structure Map table and all cells (elements) are equal to that ID.

• For non-uniform structures, a list of unit cells have already been defined (see Defining Unit
Cells), and the Structure Map table is defined separately using the GUI or the API.

Fig. 1.5: Schematics of the Structure Map table for a structure loaded in the X-Direction. Zero-based numbering is
used for rows and columns in accordance with the API. The blue vertical lines are loading ribbons.

2. Loading direction is defined and appropriate loading ribbons are created for the model. These can
be seen in Fig. 1.5.

3. Unit cells are checked to have the same bounding box (heigth, width, and depth). and if they do, they
are instantiated and translated to their locations.

4. Loading Ribbons are instantiated and translated to the appropriate locations.

5. The entire structure is merged and unnecessary parts are deleted.

It should be noted that if a solid structure is requested from a 2D structure, all the aforementioned parts are extruded
by the defined Extrusion Depth which must be equal for all unit cells. This also applies to STL or STP export of a shell
part.

1.4.1 Assembling the Unit Cells using the GUI

After defining basic structure information, select the appropriate Loading Direction. The next step depends on the
structure:

• For uniform structures the Number of Unit Cells frame is acticated. These numbers are automatically converted
into the table by the plugin.

• For non-uniform structures, after selecting the Input Structure Parameters button the pop-up windows in Fig. 1.6
appears.

The top part is used for defining the unit cell parameters as explained in Defining Unit Cells.

The bottom part of this window has two spinners which determine how many unit cells must be present in the X
and Y directions. Changing these resizes the structure map table. Afterwards, the table must be completed with
IDs of the unit cells defined in the top section.

8 Chapter 1. Getting Started

PyAuxetic, Release 2.0.1

images/sample-nonuniform-unit-cell-params.png

Fig. 1.6: Structure Parameters and Structure Map pop-up window for a non-uniform structure.

1.4.2 Assembling the Unit Cells using the API

The mentioned options and parameters can also be specifed using the API. The first variable is pattern_params, which
contains all patterning information.

First, the necessary libraries must be imported:

Import the necessary libraries:
from pyauxetic.classes.auxetic_structure_params import *

Then, For a uniform structure:

Define the PatternParams object.
Note that structure_map is set to None.
pattern_params = PatternParams(
pattern_mode = 'uniform',
num_cell_repeat = (8, 3) ,
structure_map = None

)

And for a non-uniform structure:

Import numpy.
import numpy as np

#Define the structure_map similar to the figure.
structure_map = np.array([

[1, 2, 4, 9, 10, 8, 7, 4, 2, 2],
[1, 2, 4, 9, 10, 8, 1, 4, 2, 2],
[1, 2, 4, 9, 10, 8, 7, 4, 2, 2],
[1, 2, 4, 9, 10, 8, 7, 4, 2, 2],

])

Define the PatternParams object.
structure_map must be flipped and transposed because of the way
python iterates over it.
Note that num_cell_repeat is set to None.
pattern_params = PatternParams(
pattern_mode = 'nonuniform',
num_cell_repeat = None ,
structure_map = np.fliplr(structure_map.T)

)

Also, loading direction must be defined using the loading_params object. For example:

1.4. Assembling the Unit Cells 9

PyAuxetic, Release 2.0.1

Define the LoadingParams object.
loading_params = LoadingParams(

type = 'disp',
direction = 'x' ,
data = 20.0

)

If only modeling is being performed, the direction attribute is enough,
but this is not recommended.
loading_params = LoadingParams(direction = 'x')

1.5 Different Structure Modes

In addition to a unit cell, a structure has a Structure Mode which makes up the general geometry of the structure.
Currently, only one Structure Mode is available:

1.5.1 Planar Shell Structure

Overview

A planar shell structure is a 2D structure which is meshed with 2D elements. When exported, it is extruded in the third
direction by a given amount (see Requesting Output). A sample is shown below:

Bounday Conditions

In this structure, RP-1 is a reference point tied to the the first loading edge (LD-Edge-1). This point is fixed in space.
The second reference point (RP-2) is tied to the second loading edge (LD-Edge-2) and recieves the loading. A schematic
of loading on planar shell structures is shown below:

Special Outputs

For this structure, two transverse edges TD-Edge-1 and TD-Edge-2 are defined and used for processing outputs. After-
wards, two special outputs are calculated:

• Poisson’s Ratio at the Midpoint: Two nodes named ‘TD-Midpoint-1’ and ‘TD-Midpoint-2’ are always defined
in the model using partitioning. The relative displacement of these nodes and the reference points RP-1 and RP-2
are then used to define the Poisson’s Ratio at the Midpoint.

• Mean Poisson’s Ratio: For each of TD-Edge-1 and TD-Edge-2, average values of the displacement in that edge is
calculated. The difference between the two displacements is the relative displacement at the transverse direction
which along with the relative displacement of the reference points RP-1 and RP-2 are used to define the Mean
Poisson’s Ratio.

These geometries are shown in the following figure:

10 Chapter 1. Getting Started

PyAuxetic, Release 2.0.1

O
X

Y

1.5. Different Structure Modes 11

PyAuxetic, Release 2.0.1

LD-Edge-1 LD-Edge-2

RP-1 RP-2

O
X

Y

12 Chapter 1. Getting Started

PyAuxetic, Release 2.0.1

LD-Edge-1 LD-Edge-2

TD-Edge-1

TD-Edge-2

TD-Midpoint-1

TD-Midpoint-2

RP-1 RP-2

O
X

Y

1.5. Different Structure Modes 13

PyAuxetic, Release 2.0.1

1.6 Batch Modeling

Batch modeling refers to running a series of modeling and analysis operations in consecutive order. Afterwards, output
data are compiled into a separate report. Currently, this operation in only available for uniform structures.

1.6.1 Batch Modeling using the GUI

Definition of a batch modeling job is similar to a single analysis discussed in Defining Unit Cells. After Modeling Mode
is set to Uniform (Batch), the only differences are:

• Instead of a structure name, a structure prefix is input. The number unit cell ID (see below) will then be appended
to the prefix to form structure name.

• Unit cell parameters pop-up window shows a table for entering the parameters. This is discussed in Defining
Unit Cells. Here, each row is used for a separate analysis and its number (and name) is equal to unit cell ID of
that row.

• After all analyses are complete, the results are compiled automatically. See #TODO for more information.

1.6.2 Batch Modeling using the API

First, structure_prefix and unit_cell_params_list must be defined. For example:

Define structure_prefix.
structure_prefix = 'unnamed'

Define unit_cell_params_list.
Define three unit cells for a batch of uniform structures.
Note that the first argument (id) is unique for each unit cell.
unit_cell_params_list = []
(id, extrusion_depth, horz_bounding_box, vert_bounding_box,
vert_strut_thickness, diag_strut_thickness, diag_strut_angle)
unit_cell_params_list.append(Reentrant2DUcpBox(1, 5, 20, 24, 3.0, 1.5, 60))
unit_cell_params_list.append(Reentrant2DUcpBox(2, 5, 20, 24, 3.0, 1.5, 60))
unit_cell_params_list.append(Reentrant2DUcpBox(3, 5, 20, 24, 2.0, 1.5, 60))

structures will be named 'unnamed-001', 'unnamed-003', and 'unnamed-003'.

Afterwards, the pyauxetic.main.main_batch() function is called for analysis. See #TODO for more information.

1.7 Assigning Material Properties

A number of different material properties can be defined using this software. These are all available in the GUI and API
but, as with any Abaqus analysis, care should be taken to define only the necessary material properties. Furthermore,
some definitions may not be compatible with each other. For example, elastic and hyperelastic properties can be defined
together, but will raise an error in the analysis. Finally, all material property data is passed to the Abaqus API. Any
invalid inputs are either caught by the API or result in failed or erroneous analyses.

14 Chapter 1. Getting Started

PyAuxetic, Release 2.0.1

1.7.1 Assigning Material Properties using the GUI

Currently, only elastic and hyperelastic material properties can be defined using the GUI. This may be updated in the
future. Fig. 1.7 shows the relavant frame in the analysis tab. After selecting a material mode, the relavant data can be
input.

Fig. 1.7: Material Properties frame.

1.7.2 Assigning Material Properties using the API

Material properties are defined by defining a MaterialParams object. A list of all attributes and their significance can
be found in classes.auxetic_structure_params.MaterialParams.

As an example, the following script defines a MaterialParams object with density and hyperelastic attributes.

Define the material_params object.
Undefined attributes default to None.
material_params = MaterialParams(

density = 1.00,
hyperelastic = ('marlow',

(
(0.0 , 0.0),
(1.87019, 0.021918),
(3.76788, 0.041096),
(5.63806, 0.062101),
(7.48075, 0.086758),
(9.15842, 0.122374),
(10.4785, 0.170776),
(11.4686, 0.226484),
(12.3212, 0.285845),
(13.0638, 0.346119),
(13.7514, 0.407306),
(14.5215, 0.468493),
(15.4015, 0.526941),
(16.3916, 0.583562),
(17.3542, 0.641096),
(18.2893, 0.699543),
(19.2244, 0.757078),
(20.242 , 0.812785),
(21.3146, 0.866667),

(continues on next page)

1.7. Assigning Material Properties 15

PyAuxetic, Release 2.0.1

(continued from previous page)

(22.3872, 0.921461),
(23.4598, 0.977169),
(24.5325, 1.03288),
(25.6601, 1.08676),
(26.7877, 1.14064),
(27.8603, 1.19543),
(28.8779, 1.25205),
(29.868 , 1.30868),
(30.7756, 1.36621),
(31.6832, 1.42557),
(32.5908, 1.48402),
(33.4983, 1.54247),
(34.3784, 1.60091),
(35.286 , 1.65936),
(36.1661, 1.71781),
(37.0462, 1.77626),
(37.9813, 1.8347),
(38.8889, 1.89315),
(39.824 , 1.9516),
(40.7591, 2.00913),
(41.7217, 2.06667),
(42.6843, 2.1242),
(43.7019, 2.18082),
(44.7195, 2.23653),
(45.7096, 2.29315),
(46.6997, 2.34977),
(47.7173, 2.40639),
(48.6249, 2.46484),
(49.505 , 2.5242),
(50.44 , 2.58265),
(51.4301, 2.63927),
(52.3927, 2.6968),
(53.3828, 2.75434),
(54.3454, 2.81096),
(55.198 , 2.87032),
(55.8581, 2.93242)
)

)

Note that the above tuple can be defined in a single line
this is only recommended after a successful analysis.
Also, any errors (sorting, etc.) are only caught by Abaqus.

16 Chapter 1. Getting Started

PyAuxetic, Release 2.0.1

1.8 Adjusting Step Parameters

The analysis is done in one step. The main parameters of this step can (and should) be adjusted to complete the analysis
in a timely manner.

1.8.1 Adjusting Step Parameters using the GUI

The Step Parameters frame of the analysis tab can be seen in Fig. 1.8. Note that in a batch analysis these parameters
are used for all models. Therefore, care should be taken to select a set of parameters suitable for all analysis. If a model
needs a different set, it should be run as a single analysis.

Fig. 1.8: Step parameters frame with the default values.

1.8.2 Adjusting Step Parameters using the API

Step parameters are defined by defining a StepParams object. A list of all attributes and their significance can be found
in classes.auxetic_structure_params.StepParams. An example is shown below:

Define the step_params object.
Undefined attributes default to None.
step_params = StepParams(

time_period = 0.1 ,
init_inc_size = 0.01 ,
min_inc_size = 0.005,
max_inc_size = 0.05 ,
max_num_inc = 10000

)

1.9 Adjusting Job Parameters

For each analysis, a job is defined. The main parameters of the job can (and should) be adjusted to satisfy accuracy
and time constraints. Note that in a batch analysis these parameters are used for all models. Therefore, care should be
taken to select a set of parameters suitable for all analysis. If a model needs a different set, it should be run as a single
analysis.

1.8. Adjusting Step Parameters 17

PyAuxetic, Release 2.0.1

1.9.1 Adjusting Job Parameters using the GUI

The Job Parameters frame of the analysis tab can be seen in Fig. 1.9. It should be noted that the API offers a more
complete list of options.

Fig. 1.9: Job parameters frame with the default values.

1.9.2 Adjusting Job Parameters using the API

Job parameters are defined by defining a JobParams object. A list of all attributes and their significance can be found
in classes.auxetic_structure_params.JobParams. An example is shown below:

Define the job_params object.
Undefined attributes default to None.
job_params = JobParams(

description = 'This is a sample job.',
numCpus = 4 ,
memoryPercent = 80,
explicitPrecision = 'SINGLE',
nodalOutputPrecision = 'SINGLE',

)

1.10 Defining Boundary Conditions

The software defines two boundary conditions (BCs) on every model. These are applied to reference points (RPs)
which are tied to suitable geometry using multi-point constraint equations. They are as follows:

1. An Encastre (fixed) boundary condition is defined on the ‘RP-1-set’ reference point. This means that
all points tied to this RP are fixed in all translational and rotational directions. This BC is applied
starting from the Initial step.

2. A second boundary condition is applied in the first (and only) step on the ‘RP-1-set’ reference point.
Currently, the following loadings are available:

• Uniaxial Monotonic Displacement BC: Only one value is required.

• Uniaxial Monotonic Concentrated Force: Only one value is required.

It should be noted that the of the loading influences the ribbons created for the structure (see Assembling the Unit Cells).
The boundary condition is applied based on Structure Type defined when creating the structure. See Different Structure
Modes for a list of structure types and the boundary conditions applied to them.

18 Chapter 1. Getting Started

PyAuxetic, Release 2.0.1

When running a batch analysis, these parameters are used for all models. If a model needs different boundary conditions,
it should be run as a separate analysis.

1.10.1 Defining Boundary Conditions using the GUI

The Loading Parameters frame of the analysis tab can be seen in Fig. 1.10.

Fig. 1.10: The loading parameters frame.

1.10.2 Defining Boundary Conditions using the API

Job parameters are defined by defining a LoadingParams object. A list of all attributes and their significance can be
found in classes.auxetic_structure_params.LoadingParams. An example is shown below:

Define the loading_params object
for a displacement in the x direction.
loading_params = LoadingParams(

type = 'disp',
direction = 'x' ,
data = 20.0

)

1.11 Meshing the Structure

For each analysis, meshing parameters can be defined. These are then applied to the structure. If batch modeling and
analysis is performed, the parameters are used for all models regardless of geometry. Care should be taken to select
suitable values and run problematic geometries separately.

1.11.1 Meshing the Structure using the GUI

The Mesh Parameters frame of the analysis tab can be seen in Fig. 1.11. It should be noted that the API offers a more
complete list of options. Also, Element Code drop-down menu only contains a limited number of element codes. More
element codes can be easily added upon request.

1.11. Meshing the Structure 19

PyAuxetic, Release 2.0.1

Fig. 1.11: The mesh parameters frame.

1.11.2 Meshing the Structure using the API

Mesh parameters are defined by defining a MeshParams object. A list of all attributes and their significance can be
found in classes.auxetic_structure_params.MeshParams. An example is shown below:

Define the mesh_params object.
Undefined attributes default to None.
mesh_params = MeshParams(

seed_size = 1.0 ,
elem_shape = 'QUAD' ,
elem_code = ('CPE4H') ,
elem_library = 'STANDARD'

)

1.12 Requesting Output

The software automatically saves results of the analysis to the current working directory in a folder with the same name
as the structure. These outputs generally fit in one of the following categories:

• Analysis Files: These are the files created automatically by Abaqus. These include .cae, .odb, and various
Abaqus input and log files.

• Numerical Results: The software automatically processes the ODB and producess a suitable report in a tabular
format. For batch analyses, this is done for each structure and an additional report is created which summarizes
the results of all models.

• Graphic Results: These are pictures of the structure before, after, and during analysis. They also include plots
of the numerical results.

• Exported Model: The created model can be exported in STL and STP formats. These can then be used in a
variety of CAD software or additive manufacturing processors. The loading ribbons can have a new and separate
width to accomodate testing and planar shell models are extruded by a given amount.

20 Chapter 1. Getting Started

PyAuxetic, Release 2.0.1

1.12.1 Requesting Output using the GUI

All of the mentioned outputs can be seen the Post-Processing and Results tab of the GUI which is seen in :numref:``.
Note that the API offers a more complete list of options and finer control over them.

Fig. 1.12: The Post-Processing and Results tab.

1.12.2 Requesting Output using the API

Output requests are defined by defining a OutputParams object. A list of all attributes and their significance can be
found in classes.auxetic_structure_params.OutputParams. An example is shown below:

Define the output_params object.
Undefined attributes default to None.
output_params = OutputParams(

result_folder_name = None,
save_cae = True,
save_odb = True,
save_job_files = True,
export_extrusion_depth = 5.0 ,
export_ribbon_width = 4.0 ,
export_stl = True,
export_stp = True

)

1.12. Requesting Output 21

PyAuxetic, Release 2.0.1

22 Chapter 1. Getting Started

CHAPTER

TWO

UNIT CELL LIBRARY

In this section the various unit cells are explained.

2.1 Re-Entrant 2D

The Re-Entrant 2D is a two-dimensional unit cell that has been studied for a long time. It has been originally taken
from the honeycomb strcuture [#TODO: write a paragraph and cite].

2.1.1 Variants

Three variants have been defined for this unit cell. Use of the Bounding Box variant is strongly recommended.

Full Parameters

This is the basic variant that gives the most amount of modeling freedom. All other variants are converted to this
variant. Use of this variant for non-uniform strcutures is not recommended. Fig. 2.1 shows this unit cell variant and
the points that need to be traced to draw it.

Fig. 2.1: The ‘Full Parameters’ variant of the Re-Entrant 2D unit cell

23

PyAuxetic, Release 2.0.1

After drawing a sketch based on the points in Fig. 2.1, the dimensional constraints are defined. It should be noted that
only one quarter of the model is drawn, which is then mirrored twice to obtain the final sketch.

Unit cell parameters for this strcuture are defined using the classes.auxetic_unit_cell_params.
Reentrant2DUcpFull class.

Bounding Box

In order to assemble a non-uniform structure made from this unit cell, all unit cells must have the same bounding box
and the other variants cannot be defined based on unit cell boudning box. This variant was developed to fill that need.
Fig. 2.2 shows this unit cell variant and its parameters.

Fig. 2.2: The ‘Bounding Box’ variant of the Re-Entrant 2D unit cell

The parameters are then converted into parameters for the Full Parameters variant based on the following equations
(note the order of calculations):

𝑇 ′
1 = 𝑇1

𝑇 ′
2 = 𝑇2

𝑇 ′
3 = 𝑇3

𝜃′ = 𝜃

𝐿′
2 =

0.5𝐵𝐻 − 0.5𝑇3

𝑠𝑖𝑛(𝜃)

𝐿′
3 = 0.5𝐵𝑉 + 𝐿′

2 𝑐𝑜𝑠(𝜃) +
𝑇2

𝑠𝑖𝑛(𝜃)
+

0.5𝑇3

𝑡𝑎𝑛(𝜃)

𝐿′
1 = 0.5𝐿′

3 −
𝑇2

𝑠𝑖𝑛(𝜃)
− 0.5𝑇1

𝑡𝑎𝑛(𝜃)

(2.1)

Unit cell parameters for this strcuture are defined using the classes.auxetic_unit_cell_params.
Reentrant2DUcpBox class.

24 Chapter 2. Unit Cell Library

PyAuxetic, Release 2.0.1

Simplified

This variant simplifies the parameters of the Full Parameters variant. Use of this variant for non-uniform strcutures is
not recommended. Fig. 2.3 shows this unit cell variant and its parameters.

Fig. 2.3: The ‘Simplified’ variant of the Re-Entrant 2D unit cell

The parameters are then converted into parameters for the Full Parameters variant based on Eqs. (2.2). It should be
noted that 𝐿′

2 is a dummy index and it’s value will be modified using dimensional constraints when sketching the Full
Parameters unit cell variant.

𝑇 ′
1 = 𝑇3

𝑇 ′
2 = 𝑇2

𝑇 ′
3 = 𝑇3

𝜃′ = 𝜃

𝐿′
1 = 0.5𝐿3 −

𝑇2

𝑠𝑖𝑛(𝜃)
− 0.5𝑇1

𝑡𝑎𝑛(𝜃)

𝐿′
2 =

2

3
𝐿3

𝐿′
3 = 𝐿3

(2.2)

Unit cell parameters for this strcuture are defined using the classes.auxetic_unit_cell_params.
Reentrant2DUcpSimple class.

2.1.2 Assembly

Assembly of this unit cell is very straightforward. The unit cells must satisfy two requirements:

• They must have the same bounding box (height and width). As such, only the Bounding Box variant is guaranteed
to work for non-uniform strcutures.

• In the distance between the initial point in the unit cell and the final drawn point which is on top of it in Fig. 2.1
must be the same for all models.

Assembly is performed as explained in Assembling the Unit Cells.

Currently, only shell structure model is supported which is assembled similar to Fig. 2.4.

2.1. Re-Entrant 2D 25

PyAuxetic, Release 2.0.1

Fig. 2.4: Assembly structure map used for a shell Re-Entrant 2D structure.

26 Chapter 2. Unit Cell Library

CHAPTER

THREE

API REFERENCE

This reference contains a detailed explaination of all public and private packages, classes, and functions used in this
library. You should always consults the examples and the source code for usage.

3.1 Main Functions

Main functions of the PyAuxetic API.

This package contains the main functions used in the PyAuxetic API which are used for creating and analyzing one or
more auxetic structures. It also defines the bindings for the GUI library used in the Abaqus plugin.

pyauxetic.main.main_single(unit_cell_name, structure_name, unit_cell_params, pattern_params,
material_params, loading_params, mesh_params, job_params, output_params,
step_params=None, run_analysis=True, is_part_of_batch=False)

Model and analyze a single auxetic structure.

Parameters
• unit_cell_name (str) – Type of the structure. See #TODO for a complete list of values.

• structure_name (str) – Name of the structure. Used for all output files.

• unit_cell_params – Parameters describing the unit cell geometry. Valid classes must
be selected from classes.auxetic_unit_cell_params based on unit_cell_name. For
nonuniform structures, must be a tuple where all unit cell ids used in structure_map are
defined.

• pattern_params (PatternParams) – Special namedtuple describing the parameters for
patterning the unit cell(s). See class for full description of options.

• material_params (MaterialParams) – Special namedtuple describing the material used
for modeling and analysis. See class for full description of options.

• step_params (StepParams) – Special namedtuple describing the step defined for analysis.
If not specified, the default values of the namedtuple are used. See class for full description
of options. Defaults to None which uses the default step values.

• loading_params (LoadingParams) – Special namedtuple describing the loading and
boundary conditions applied to the model. See class for full description of options.

• mesh_params (MeshParams) – Special namedtuple describing the mesh applied to the
model. See class for full description of options.

• job_params (JobParams) – Special namedtuple describing the job created for analysis. See
class for full description of options.

27

PyAuxetic, Release 2.0.1

• output_params (OutputParams) – Special namedtuple describing the parameters for out-
putting the results of modeling and analysis. See class for full description of options.

• run_analysis (bool) – If True, The model is analyzed. Otherwise material_params,
step_params, mesh_params, job_params, and output_params are need not be defined. De-
faults to True.

• is_part_of_batch (bool) – If calling from main_batch(), must be set to True. Defaults
to False.

Returns
An object of a subclass of AuxeticStructure class.

pyauxetic.main.main_batch(unit_cell_name, structure_prefix, unit_cell_params_list, pattern_params,
material_params, loading_params, mesh_params, job_params, output_params,
step_params=None, run_analysis=True)

Run a number of analysis in succession and merge the results to a single csv file.

All paramters of this function are the same as main_single().

The exceptions are:

Parameters
• structure_prefix (str) – The prefix used for all structures. This prefix together with a

number is used for defining structure_name.

• unit_cell_params_list – A list of unit_cell_params for the structures. The id in each
parameter must be unique and is used for defining structure_name.

All other parameters are passed without change or validation.

pyauxetic.main.main_gui_proxy(**kwargs)
This function is not documented. You need extensive knowledge of Abaqus GUI design to modify it. Use caution
and test extensively.

3.2 ABC for Auxetic Unit Cells

class pyauxetic.classes.auxetic_unit_cell.AuxeticUnitCell(model, params)
Abstract base class for defining an auxetic unit cell. It defines the core behavior and must be subclassed for
different unit cells.

__init__(model, params)
Initialize the unit cell with the given parameters.

Child classes must first define self.name and afterwards call this function using super(ChildClass,
self).__init__(params). This function then creates the self.sketch and self.part_main.

Logging is done in the child classes.

Parameters
• model (Model) – Abaqus Model object in which the unit cell will be created.

• params – Parameters describing the unit cell geometry. See child classes for valid object
types.

property part_3dprint

Abaqus Part object suitable for 3D export. If the part does not exist, it will be created.

28 Chapter 3. API Reference

PyAuxetic, Release 2.0.1

property part_main

The main Abaqus Part of the structure which can be planar or 3D. If the part does not exist, it will be
created.

abstract create_sketch()

Create the 2D sketch for the unit cell. See child classes for implementation.

abstract create_part_main()

Create the main part of the unit cell based on the sketch. See child classes for implementation.

abstract create_part_3dprint()

Create the part used for 3D printng based on the sketch. See child classes for implementation.

3.3 ABC for Auxetic Structures

class pyauxetic.classes.auxetic_structure.AuxeticStructure(model, name, loading_params)
Abstract base class for defining an auxetic structure. It defines the core behavior and must be subclassed for
structures using different unit cells.

The following methods must be called in this exact order:

1. add_unit_cells()

2. add_pattern_params()

3. assemble_structure()

4. define_step()

5. define_bcs()

6. mesh_part()

7. create_job()

8. submit_job()

9. output_results()

__init__(model, name, loading_params)
Initialize the auxetic structure.

Child classes must define the following and class variables and then call this constructor:

• pretty_name

• is_solid

• is_shell

• is_bulk

• is_planar

• is_tubular

• unit_cell_class

Parameters
• model (Model) – Abaqus Model object in which the auxetic structure will be created.

• name (str) – Name of the structure. It will be used for all related files.

3.3. ABC for Auxetic Structures 29

PyAuxetic, Release 2.0.1

• loading_params (LoadingParams) – Special namedtuple describing the loading and
boundary conditions applied to the model. Here, loading_params.direction is used for
determining positioning of loading ribbons.

abstract assemble_structure(for_3dprint=False, output_params=None, delete_all=True)
Assemble one or more unit cells according to pattern parameters to create the auxetic structure.
add_pattern_params() must be called before this.

This function must be defined by each child class of AuxeticStructure

Parameters
• for_3dprint (bool) – If True, the structure will be a 3D part suitable for export, Other-

wise dimensionality will be governed by the structure. Defaults to False.

• output_params (OutputParams) – Special namedtuple describing the parameters for
outputting the results of modeling and analysis. See class for full description of
options. Here, output_params.export_extrusion_depth it is used for deteriming rib-
bon_extrusion_depth. If for_3dprint is False, this need not be passed. Defaults to None.

• delete_all (bool) – If True, all useless parts will be deleted. Defaults to True.

add_pattern_params(pattern_params)
Add the parameters used by assemble_structure() for assembling the structure.

Parameters
pattern_params (PatternParams) – Special namedtuple describing the parameters for
patterning the unit cell(s). See class for full description of options.

add_unit_cells(unit_cell_params)
Add one or more unit cells to the auxetic structure.

Parameters
unit_cell_params – Special namedtuple describing the unit cell geometry. The named-
tuple must be selected from classes.auxetic_unit_cell_params based on the type
of structure. For nonuniform structures, must be a tuple where all unit cell ids used in
self.structure_map are defined.

Raises
• RuntimeError – If add_pattern_params() has already been called.

• ValueError – If unit_cell_params is invalid.

• ValueError – If unit_cell_params contains repeated or non-positive ids.

• ValueError – If unit_cell_params contains more than one value for extrusion_depth or
it’s non-positive (planar structures only).

get_unit_cell_by_id(id)
Return a unit cell in the structure based on its id.

Parameters
id (int) – Unique numeric ID of the unit cell.

Returns
The unit cell whose id is specified.

Raises
ValueError – If the unit cell does not exist.

30 Chapter 3. API Reference

PyAuxetic, Release 2.0.1

assign_material(material_params)
Assign material properties to the auxetic structure.

Note that material_params.material_data is not validated. Duck-Typing is used for calling the API and
some errors are caught by the API itself, but ultimately any bad values are carried to the CAE model.

Parameters
material_params (MaterialParams) – Special namedtuple describing the material used
for modeling and analysis. See class for full description of options.

Raises
• ValueError – If material_params.hyperelastic is invalid.

• ValueError – If material_params.hyperelastic is invalid.

• AbaqusException – Various exceptions raised by the Abaqus API.

define_step(step_params=None)
Define a single step for the analysis. Currently, only static general steps are supported. The step is named
‘Step-1’, but this name is not hard-coded elsewhere. Also, the nonlinear geometry (NLGEOM) parameter
is always turned on.

Parameters
step_params (StepParams) – Special namedtuple describing the step defined for analysis.
If not specified, the default values of the namedtuple are used. Also, validation of values is
done by Abaqus API. See class for full description of options.

Raises
AbaqusException – Various exceptions raised by the Abaqus API.

define_bcs(loading_params)
Apply loads and boundary conditions (BCs) to the structure. This function must be called after
define_step(). It then calls _perpare_for_loading() and afterwards defines the following BCs:

• An Encastre BC (fixed in all 6 directions) is applied from the initial step on the reference point
self.loading_rps[0], which is coupled to ‘LD-Edge-1’.

• A second load/BC is applied from the single loading step of the model based on on the reference point
self.loading_rps[1], which is coupled to ‘LD-Edge-2’. This load/BC is governed by loading_params
and currently can be one of the following:

– Uniaxial monotonic displacement BC.

Parameters
loading_params (LoadingParams) – Special namedtuple describing the loading and and
boundary conditions applied to the model. See class for full description of options.

Raises
• RuntimeError – If the number of steps in the model is not exactly 2.

• ValueError – If material_params.material_type is invalid.

• AbaqusException – Various exceptions raised by the Abaqus API.

mesh_part(mesh_params)
Mesh the model.

The following functions are used in succession:

• seedPart(): deviationFactor and minSizeFactor are set to 0.1 and constraint is not supported.

3.3. ABC for Auxetic Structures 31

PyAuxetic, Release 2.0.1

• setMeshControls(): The following parameters are not supported: technique, algorithm, minTransi-
tion, sizeGrowth, allowMapped.

• setElementType(): The following constraints exist:

– region is set to all faces/cells of the structure.

– The elemTypes tuple is determined by mesh_params.elem_code and mesh_params.elem_library.

Parameters
mesh_params (MeshParams) – Special namedtuple describing the mesh applied to the
model. See class for full description of options.

Raises
• ValueError – If mesh_params.elem_shape is invalid.

• ValueError – If mesh_params.elem_shape does not correspond to the structure’s dimen-
sionality.

• ValueError – If mesh_params.elem_library is invalid.

• ValueError – If *mesh_params.elem_code is invalid.

• KeyError – If mesh_params.elem_code does not correspond to a SymbolicConstant.

• ValueError – If mesh_params.elem_code does not correspond to an element.

• AbaqusException – Various exceptions raised by the Abaqus API.

create_job(job_params)
Define a single step for the analysis. Assigns self.job. Current limitations are:

• numDomains is set to numCpus.

• numGPUs is set to 0.

• User subroutine are not supported.

Parameters
job_params (JobParams) – Special namedtuple describing the job created for analysis. See
class for full description of options.

Raises
AbaqusException – Various exceptions raised by the Abaqus API.

submit_job()

Submit the job and wait for it to finish. Does not clean old files, but they should not be a problem.

Raises
• RuntimeError – If the job has not been defined by create_job().

• RuntimeError – If the job does not complete successfuly.

• AbaqusException – Various exceptions raised by the Abaqus API.

output_results(output_params)
Output the results of the analysis.

Parameters
output_params (OutputParams) – Special namedtuple describing the parameters for out-
putting the results of modeling and analysis. See class for full description of options.

32 Chapter 3. API Reference

PyAuxetic, Release 2.0.1

Raises
• RuntimeError – If the job has not been completed.

• ValueError – If output_params.export_ribbon_width has not been specified but STL or
STP export is requested.

• AbaqusException – Various exceptions raised by the Abaqus API.

3.4 Unit Cell Parameters

This module contains instances of namedtuple that are used for defining the different unit cells that can be used for
creating auxetic structures.

class pyauxetic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull(id, extrusion_depth,
tail_strut_length,
tail_strut_thickness,
diag_strut_length,
diag_strut_thickness,
diag_strut_angle,
vert_strut_length,
vert_strut_thickness)

diag_strut_angle

Alias for field number 6

diag_strut_length

Alias for field number 4

diag_strut_thickness

Alias for field number 5

extrusion_depth

Alias for field number 1

formal_names = {'diag_strut_angle': 'Diagonal Strut Angle (deg)',
'diag_strut_length': 'Diagonal Strut Length', 'diag_strut_thickness': 'Diagonal
Strut Thickness', 'extrusion_depth': 'Output Extrusion Depth', 'id': 'Unit Cell
ID', 'tail_strut_length': 'Tail Strut Length', 'tail_strut_thickness': 'Tail Strut
Thickness', 'vert_strut_length': 'Vertical Strut Length', 'vert_strut_thickness':
'Vertical Strut Thickness'}

id

Alias for field number 0

tail_strut_length

Alias for field number 2

tail_strut_thickness

Alias for field number 3

unit_cell_type = 'Re-Entrant 2D'

vert_strut_length

Alias for field number 7

3.4. Unit Cell Parameters 33

PyAuxetic, Release 2.0.1

vert_strut_thickness

Alias for field number 8

class pyauxetic.classes.auxetic_unit_cell_params.Reentrant2DUcpBox(id, extrusion_depth,
horz_bounding_box,
vert_bounding_box,
vert_strut_thickness,
diag_strut_thickness,
diag_strut_angle)

diag_strut_angle

Alias for field number 6

diag_strut_thickness

Alias for field number 5

extrusion_depth

Alias for field number 1

formal_names = {'diag_strut_angle': 'Diagonal Strut Angle (deg)',
'diag_strut_thickness': 'Diagonal Strut Thickness', 'extrusion_depth': 'Output
Extrusion Depth', 'horz_bounding_box': 'Vertical Bounding Box', 'id': 'Unit Cell
ID', 'vert_bounding_box': 'Horizontal Bounding Box', 'vert_strut_thickness':
'Vertical Strut Thickness'}

horz_bounding_box

Alias for field number 2

id

Alias for field number 0

unit_cell_type = 'Re-Entrant 2D'

vert_bounding_box

Alias for field number 3

vert_strut_thickness

Alias for field number 4

class pyauxetic.classes.auxetic_unit_cell_params.Reentrant2DUcpSimple(id, extrusion_depth,
vert_strut_length,
vert_strut_thickness,
diag_strut_thickness,
diag_strut_angle)

diag_strut_angle

Alias for field number 5

diag_strut_thickness

Alias for field number 4

extrusion_depth

Alias for field number 1

formal_names = {'diag_strut_angle': 'Diagonal Strut Angle (deg)',
'diag_strut_thickness': 'Diagonal Strut Thickness', 'extrusion_depth': 'Output
Extrusion Depth', 'id': 'Unit Cell ID', 'vert_strut_length': 'Vertical Strut
Length', 'vert_strut_thickness': 'Vertical Strut Thickness'}

34 Chapter 3. API Reference

PyAuxetic, Release 2.0.1

id

Alias for field number 0

unit_cell_type = 'Re-Entrant 2D'

vert_strut_length

Alias for field number 2

vert_strut_thickness

Alias for field number 3

3.5 Auxetic Structure Parameters

This module contains instances of namedtuple that are used for defining the different aspects of the structure.

class pyauxetic.classes.auxetic_structure_params.PatternParams(pattern_mode=None,
num_cell_repeat=None,
structure_map=None)

namedtuple instance describing the parameters for patterning the unit cell(s) that make up the structure.

num_cell_repeat

(Tuple) A Tuple of integers in the shape of (x,y) or (x,y,z) defining the number of times the unit cell is to
be repeated in the x, y, and z directions.

Used only when PatternParams.pattern_mode == ‘uniform’.

Defaults to None.

pattern_mode

(str) The type of patterning used for the structure:

• ‘uniform’: A singular unit cell is repeated based on PatternParams.num_cell_repeat.

• ‘nonuniform’: A number of unit cells are patterned based on PatternParams.structure_map.

Raises ValueError for other values. Defaults to None, which also raises the error.

structure_map

(np.array) A numpy array containing integer ids of unit cells and how they are distributed in the structure.
The unit cells must be compatible for patterning.

Used only when PatternParams.pattern_mode == ‘nonuniform’.

Defaults to None.

class pyauxetic.classes.auxetic_structure_params.MaterialParams(elastic=None, density=None,
hyperelastic=None)

namedtuple instance describing the material used for modeling and analysis. Care should be taken not to define
contradicting properties.

density

(Float) Isotropic and temperature independent material Density.

Defaults to None, which does not define this property.

3.5. Auxetic Structure Parameters 35

PyAuxetic, Release 2.0.1

elastic

(Tuple) Isotropic and temperature independent elastic property. It should be a Tuple (𝐸, 𝜈) where 𝐸 is
Young’s Modulus and 𝜈 is Poisson’s Ratio.

Defaults to None, which does not define this property.

hyperelastic

(Tuple) Isotropic and temperature independent hyperelastic property. It should be a Tuple (type, data)
where data is one of the following:

• ‘ogden’: The Ogden form of strain energy potential hyperelastic model. data must be an iterable
((𝜎0, 𝜖0), (𝜎1, 𝜖1), ...) where each pair (𝜎𝑖, 𝜖𝑖) are a point in the isotropic uniaxial stress-strain test
data.

• ‘marlow’: The Marlow form of strain energy potential hyperelastic model. data is similar to the
‘ogden’ option.

Defaults to None, which does not define this property.

class pyauxetic.classes.auxetic_structure_params.StepParams(time_period=1, init_inc_size=0.1,
min_inc_size=0.05,
max_inc_size=0.1,
max_num_inc=100)

namedtuple instance describing the step defined for analysis.

init_inc_size

(float) Inital increment size. Defaults to 0.1.

max_inc_size

(float) Maximum increment size. Defaults to 0.1.

max_num_inc

(float) Maximum number of increments. Defaults to 100.

min_inc_size

(float) Minimum increment size. Defaults to 0.05.

time_period

(float) Total time period of the step. Defaults to 1.

class pyauxetic.classes.auxetic_structure_params.LoadingParams(type=None, direction=None,
data=None)

namedtuple instance describing the loading applied to the model.

data

The amount of loading applied to the model. See loading_type for format.

This variable is not validated, except for default Abaqus validations for each BC/Loading type. Define with
caution.

Defaults to None.

direction

(str) Direction of loading applied to the model. Must be ‘x’ or ‘y’. ‘z’ is currently not supported. Note
that this also affects the positioning of the ribbons.

Raises ValueError for other values. Defaults to None, which also raises the error.

36 Chapter 3. API Reference

PyAuxetic, Release 2.0.1

type

(str) The type of loading applied to the model. Valid values are:

• ‘disp’: Uniaxial monotonic displacement boundary condition. loading_data must be a float.

• ‘force’: Uniaxial monotonic concentrated force. loading_data must be a float.

Raises ValueError for other values. Defaults to None, which also raises the error.

class pyauxetic.classes.auxetic_structure_params.MeshParams(seed_size=None, elem_shape=None,
elem_code=None,
elem_library=None)

namedtuple instance describing the mesh applied to the model. See Abaqus documentation for definitions and
discussions of each parameter’s significance.

elem_code

(str) Element code used in the mesh. Values must be upper-case strings naming the element code, such as
‘C3D10HS’, ‘CPE4H’, or ‘C3D8R’. Can also be a tuple of mentioned values for QUAD_DOMINATED or
HEX_DOMINATED element shapes.

Specified element code(s) must be correct with respect to MeshParams.elem_shape and structure geometry.

Defaults to None which raises an error.

elem_library

(str) Element library used in the mesh. Must be the same as the analysis type defined in StepParams. Valid
values are ‘STANDARD’ and ‘EXPLICIT’,

Defaults to None which raises an error.

elem_shape

(str) Shape of the elements used in the mesh. Valid values are ‘QUAD’, ‘QUAD_DOMINATED’, ‘TRI’,
‘HEX’, ‘HEX_DOMINATED’, ‘TET’, and ‘WEDGE’.

Specified values must be correct with respect to MeshParams.elem_code and structure geometry. No vali-
dation is performed except for errors raised by Abaqus CAE or solver.

Defaults to None which raises an error.

seed_size

(float) Size of the seed used for mesh generation. Defaults to None which raises an error.

class pyauxetic.classes.auxetic_structure_params.JobParams(description='', numCpus=1,
memoryPercent=90,
explicitPrecision='single',
nodalOutputPrecision='single')

namedtuple instance describing the job created for analysis.

description

(str) Description of the job. Defaults to an empty string.

explicitPrecision

(str) Precision used for Abaqus/Explicit solver. Valid values are ‘SINGLE’ and ‘DOUBLE’. Defaults to
‘single’.

memoryPercent

(int) Amount of RAM in percent allocated to the analysis. Defaults to 90.

nodalOutputPrecision

(str) Nodal output precision. Valid values are ‘SINGLE’ and ‘DOUBLE’. Defaults to ‘single’.

3.5. Auxetic Structure Parameters 37

PyAuxetic, Release 2.0.1

numCpus

(int) Number of CPU cores used for the analysis. Defaults to 1.

class pyauxetic.classes.auxetic_structure_params.OutputParams(result_folder_name=None,
save_cae=True, save_odb=True,
save_job_files=True,
export_ribbon_width=None,
export_stl=False,
export_stp=False)

namedtuple instance describing the parameters for outputting the results of modeling and analysis.

export_ribbon_width

Float defining the ribbon width used for exporting the part. Must be positive, but can be None if the part
will not be exported (both export_stl are export_stp are False).

Defaults to None.

export_stl

Whether or not to export the structure in the STL format. Defaults to False.

export_stp

Whether or not to export the structure in the STP format. Defaults to False.

result_folder_name

Path to the folder where the requested results are to be stored. Everything else is left at the working folder.
If set to None, a suitable name is selected using #TODO.

Defaults to None.

save_cae

Whether or not to save the model database (.cae file). Defaults to True.

save_job_files

Whether or not to save the miscellaneous job files (inp, msg, log, and sta files). Defaults to True.

save_odb

Whether or not to save the output database (.odb file). Defaults to True.

3.6 Classes Based on Different Unit Cells

These entries explains the classes that are based on different unit cells. Each entry contains a unit cell class and a
number of structure classes.

3.6.1 Reentrant-2D Unit Cell

class pyauxetic.classes.reentrant2d.Reentrant2DUnitCell(model, params)
Bases: AuxeticUnitCell

Class defining a 2D Re-Entrant unit cell.

params_class_list = (<class
'pyauxetic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull'>, <class
'pyauxetic.classes.auxetic_unit_cell_params.Reentrant2DUcpBox'>, <class
'pyauxetic.classes.auxetic_unit_cell_params.Reentrant2DUcpSimple'>)

38 Chapter 3. API Reference

PyAuxetic, Release 2.0.1

__init__(model, params)
Initialize the object with the given parameters.

Calls auxetic_unit_cell.AuxeticUnitCell.__init__() which creates self.sketch and
self.part_main.

Parameters
• model (Model) – Abaqus Model object in which the unit cell will be created.

• params – Parameters describing the unit cell geometry. It must be from a suitable class
based on the list defined in auxetic_unit_cell_params.reentrant2d_ucp_list.

create_part_main()

Create the main part of the unit cell based on the sketch.

create_part_3dprint()

Create the part used for 3D printing based on the sketch.

create_sketch()

Create the 2D sketch for the unit cell. A suitable creation method is called based on the unit cell parameters
class passed to the unit cell object.

class pyauxetic.classes.reentrant2d.Reentrant2DPlanarShellStructure(model, name,
loading_params)

Bases: AuxeticStructure

Class defining an auxetic structure based on the reentrant unit cell.

pretty_name = 'Planar Shell Re-Entrant 2D'

is_solid = False

is_shell = True

is_bulk = False

is_planar = True

is_tubular = False

unit_cell_class

alias of Reentrant2DUnitCell

assemble_core_structure(structure_map=None, for_3dprint=False, delete_all=True)
Pattern the unit cells to form the core auxetic structure.

It is called by assemble_structure(), which is responsible for validating all input.

Parameters
• structure_map (np.array) – A numpy array containing integer ids of unit cells and how

they are distributed in the structure. It is defined by assemble_structure() regardless
of its pattern_params argument.

• for_3dprint (bool) – If True, the structure will be a 3D part suitable for export, Other-
wise dimensionality will be governed by the structure. Defaults to False.

• delete_all (bool) – If True, all useless parts will be deleted. Defaults to True.

Returns
A tuple containing the created core auxetic structure part and its instance.

3.6. Classes Based on Different Unit Cells 39

PyAuxetic, Release 2.0.1

Raises
AbaqusException – Various exceptions raised by the Abaqus API. Sometimes exceptions
will be fatal.

assemble_structure(for_3dprint=False, output_params=None, delete_all=True)
Assemble one or more unit cells according to pattern parameters to create the auxetic structure.
add_pattern_params() must be called before this.

This is the implementation of auxetic_structure.AuxeticStructure.assemble_structure() for
this class.

Parameters
• for_3dprint (bool) – If True, the structure will be a 3D part suitable for export, Other-

wise dimensionality will be governed by the structure. Defaults to False.

• output_params (OutputParams) – Special namedtuple describing the parameters for
outputting the results of modeling and analysis. See class for full description of options.
Here, output_params.export_ribbon_width it is used for deteriming width of the ribbon. If
for_3dprint is False, this need not be passed. Defaults to None.

• delete_all (bool) – If True, all useless parts will be deleted. Defaults to True.

pyauxetic.classes.reentrant2d.create_sketch_reentrant2d_full(model, params, sketch_name)
Create the 2D sketch of a reentrant2d unit cell using the full set of unit cell parameters.

Parameters
• model (Model) – Abaqus Model object in which the unit cell will be created.

• params (Reentrant2DUcpFull) – Parameters describing the unit cell geometry. See
#TODO for details.

• sketch_name (str) – Name assigned to the skecth.

pyauxetic.classes.reentrant2d.create_sketch_reentrant2d_box(model, params, sketch_name)
Create the 2D sketch of a reentrant2d unit cell using the ‘bounding box’ set of unit cell parameters.

Parameters
• model (Model) – Abaqus Model object in which the unit cell will be created.

• params (Reentrant2DUcpBox) – Parameters describing the unit cell geometry. See
#TODO for details.

• sketch_name (str) – Name assigned to the skecth.

pyauxetic.classes.reentrant2d.create_sketch_reentrant2d_simple(model, params, sketch_name)
Create the 2D sketch of a reentrant2d unit cell using the simplified set of unit cell parameters.

Parameters
• model (Model) – Abaqus Model object in which the unit cell will be created.

• params (Reentrant2DUcpSimple) – Parameters describing the unit cell geometry. See
#TODO for details.

• sketch_name (str) – Name assigned to the skecth.

40 Chapter 3. API Reference

PyAuxetic, Release 2.0.1

3.7 Helper Functions

Helper functions used in the PyAuxetic library for various operations.

pyauxetic.helper.create_ribbon_part(model, length_x, length_y, is3d, extrusion_depth)
Create a rectangular ribbon part.

Parameters
• model (Model) – Model object in which the part will be created.

• length_x (float) – Length of the part in the x (1st) direction

• length_y (float) – Length of the part in the y (2nd) direction

• is3d (bool) – If True, the part is extruded.

• extrusion_depth (float) – Extrusion depth used if is3d is True.

Returns
The created part object.

pyauxetic.helper.draw_line(sketch, point1, point2)
Draw a line using two points and return the second point.

Output of this function is intended to be used as point1 for future uses.

Parameters
• sketch (ConstrainedSketch) – The sketch in which the line is drawn.

• point1 (tuple) – 2D Cartesian coordinates of the first point.

• point2 (tuple) – 2D Cartesian coordinates of the second point.

Returns
A tuple in the form of ((x,y), lineObj) containing 2D Cartesian coordinates of the second point
and the created line object.

pyauxetic.helper.find_edges_from_coords(part, coord, value)
Find edges of a part that exist on a certain value along a given coordinate axis.

Parameters
• part (Part) – The part in question.

• coord (int) – The coordinate axis used for the operation. Valid values are 1, 2, or 3.

• value (float) – Value of the coordinate specified in coord.

Returns
An EdgeArray object containing one or more edges which have a point on the given coordinates.

Raises
RuntimeError – If no edges are found.

pyauxetic.helper.find_vertices_from_coords(part, coord, value)
Find vertices of a part that exist on a certain value along a given coordinate axis.

Parameters
• part (Part) – The part in question.

• coord (int) – The coordinate axis used for the operation. Valid values are 1, 2, or 3.

• value (float) – Value of the coordinate specified in coord.

3.7. Helper Functions 41

PyAuxetic, Release 2.0.1

Returns
A VertexArray object containing one or more vertices which have a point on the given coordi-
nates.

Raises
RuntimeError – If no vertices are found.

pyauxetic.helper.find_vertices_from_coords_minmax(part, coord, value)
Find the first and last vertices of a part that exist on a certain value along a given coordinate axis.

Parameters
• part (Part) – The part in question.

• coord (int) – The coordinate axis used for the operation. Valid values are 1, 2, or 3.

• value (float) – Value of the coordinate specified in coord.

Returns
A Tuple of two VertexArray objects for the first and last vertices.

Raises
RuntimeError – If no vertices are found.

pyauxetic.helper.find_regular_geometries(sketch)
Searches the sketch and returns a list of REGULAR geometries.

Geometries in an Abaqus sketch are either REGULAR or CONSTRUCTION, the latter of which is used for
defining relationships. This function is intended to filter out construction lines defined for mirroring parts.

Parameters
sketch (ConstrainedSketch) – The sketch in which the line is drawn.

Returns
A list of ConstrainedSketchGeometry objects which are REGULAR.

pyauxetic.helper.get_part_box_size(part)
Calculates size of a part’s rectangular boundary.

Parameters
part (Part) – The part which is queried.

Returns
A tuple in the form of (x,y,z) containing size of the part’s rectangular boundary in the Cartesian
coordinate system.

pyauxetic.helper.get_box_coords(object_list)
Find the minimum and maximum Cartesian coordinates for a Part or PartInstance.

Parameters
object_list (Part/PartInstance/Repository/tuple) – The part(s) or instance(s) which
are queried.

Returns
A tuple of tuples in the form of ((min_x, min_y, min_z), (max_x, max_y, max_z)) the minimum
and maximum Cartesian coordinates of the parts.

pyauxetic.helper.return_results_folder_path(structure_name, root_folder_name=None)
Return a unified path for storing results of analysis of a structure.

Parameters
• structure_name (str) – Name of the structure for which the folder is created.

42 Chapter 3. API Reference

PyAuxetic, Release 2.0.1

• root_folder_name (str) – Name for the root folder. Defaults to None.

Returns
Absolute path for the results folder.

pyauxetic.helper.return_sketch_name(base_name)
Return a unified name for a sketch based on a base name.

Parameters
base_name (str) – Base name to which a suffix is added.

Returns
A suitable name for an Abaqus sketch.

pyauxetic.helper.return_unit_cell_name_main(base_name)
Return the name of a main part based on a unit cell.

Parameters
base_name (str) – Base name to which a suffix is added.

Returns
A suitable name for an Abaqus part.

pyauxetic.helper.return_unit_cell_name_3dprint(base_name)
Return the name of a 3D printing part based on a unit cell. Use this function only for naming parts that are used
for 3D printing.

Parameters
base_name (str) – Base name to which a suffix is added.

Returns
A suitable name for an Abaqus part.

pyauxetic.helper.return_instance_name(base_name, suffix='')
Return the name of an instance based on a unit cell.

Parameters
base_name (str) – Base name to which a suffix is added. Defaults to an empty string.

Returns
A suitable name for an Abaqus instance.

pyauxetic.helper.transfer_instance_to_zero(model, instance)
Transfer a PartInstance so it’s vertex with minimum coordinates is at global (0,0,0).

Parameters
• model (Model) – Model object in which the instance is defined.

• instance (PartInstance) – The instance to be moved.

3.7. Helper Functions 43

PyAuxetic, Release 2.0.1

44 Chapter 3. API Reference

CHAPTER

FOUR

CONTRIBUTE TO THE SOFTWARE

We welcome all contributions. You can help in the following ways:

• Testing and Bug Reports: We always appreciate testing various features and reporting any problems. You can
use our GitHub issue tracker for bug reports.

• Example Problems: While we provide entries for example problems, not all of them have been tested experi-
mentally. We always appreciate users testing the concepts and structures in the real world. We will, of course,
give appropriate citations when applicable.

• Documentation: The software always needs more documentaion. We use Sphinx which is very straightforward.

• New Features: We appreciate implementation of new features. There are a few ways to go about this:

– If you can add features using the object-oriented approach, submit a pull request and we will review your
code.

– If you can write the code using Abqus’ Python API but would rather not bother with the object-oriented
framework, you can send us scripts and we may be able to add them to the software. Make sure to say this
in your feature request.

– If you have a new concept that you think can add value to the scientific community, send the maintainer of
the repository (M. Khoshbin) a private message on GitHub. We may be able to collaborate in a scientific
framework.

45

PyAuxetic, Release 2.0.1

46 Chapter 4. Contribute to the Software

CHAPTER

FIVE

LICENSING

Use of this sofware is licensed under GNU Affero General Public License v3.0 or later standard software license. You
can find the latest version of this license in the GNU website.

47

https://www.gnu.org/licenses/agpl-3.0.txt

PyAuxetic, Release 2.0.1

48 Chapter 5. Licensing

CHAPTER

SIX

THE PYAUXETIC TEAM

This software is a result of a collaboration between academics and engineers with vastly different skill sets. We believe
in giving credit where it’s due, and as such maintain the following list of contributers. If you believe that we are missing
something, let us know and we will update the list.

6.1 Main Team

Javad Kadkhodapour, PhD: Project Lead. Developed concepts and coordinates research and programming efforts.

Mohammadreza Khoshbin, PhDc: Software Developer and Maintainer. Developed concepts, created the software
and maintains the software and documentation.

6.2 Contributers

Ali Pourkamali Anaraki, PhD: Provided the experimental and computational facilities.

Hossein Dibajian, PhD: Developed concepts and wrote the initial version of the software named Auextic2D.

Alireza Sangsefidi, PhDc: Performed experiments for example problems and tested the software.

Shane O’ Sullivan (University of Limerick, Ireland): Tested the GUI and reported multiple bugs.

49

PyAuxetic, Release 2.0.1

50 Chapter 6. The PyAuxetic Team

PYTHON MODULE INDEX

p
pyauxetic.classes.auxetic_structure, 29
pyauxetic.classes.auxetic_structure_params,

35
pyauxetic.classes.auxetic_unit_cell, 28
pyauxetic.classes.auxetic_unit_cell_params,

33
pyauxetic.classes.reentrant2d, 38
pyauxetic.helper, 41
pyauxetic.main, 27

51

PyAuxetic, Release 2.0.1

52 Python Module Index

INDEX

Symbols
__init__() (pyauxetic.classes.auxetic_structure.AuxeticStructure

method), 29
__init__() (pyauxetic.classes.auxetic_unit_cell.AuxeticUnitCell

method), 28
__init__() (pyauxetic.classes.reentrant2d.Reentrant2DUnitCell

method), 38

A
add_pattern_params() (pyaux-

etic.classes.auxetic_structure.AuxeticStructure
method), 30

add_unit_cells() (pyaux-
etic.classes.auxetic_structure.AuxeticStructure
method), 30

assemble_core_structure() (pyaux-
etic.classes.reentrant2d.Reentrant2DPlanarShellStructure
method), 39

assemble_structure() (pyaux-
etic.classes.auxetic_structure.AuxeticStructure
method), 30

assemble_structure() (pyaux-
etic.classes.reentrant2d.Reentrant2DPlanarShellStructure
method), 40

assign_material() (pyaux-
etic.classes.auxetic_structure.AuxeticStructure
method), 30

AuxeticStructure (class in pyaux-
etic.classes.auxetic_structure), 29

AuxeticUnitCell (class in pyaux-
etic.classes.auxetic_unit_cell), 28

C
create_job() (pyaux-

etic.classes.auxetic_structure.AuxeticStructure
method), 32

create_part_3dprint() (pyaux-
etic.classes.auxetic_unit_cell.AuxeticUnitCell
method), 29

create_part_3dprint() (pyaux-
etic.classes.reentrant2d.Reentrant2DUnitCell
method), 39

create_part_main() (pyaux-
etic.classes.auxetic_unit_cell.AuxeticUnitCell
method), 29

create_part_main() (pyaux-
etic.classes.reentrant2d.Reentrant2DUnitCell
method), 39

create_ribbon_part() (in module pyauxetic.helper),
41

create_sketch() (pyaux-
etic.classes.auxetic_unit_cell.AuxeticUnitCell
method), 29

create_sketch() (pyaux-
etic.classes.reentrant2d.Reentrant2DUnitCell
method), 39

create_sketch_reentrant2d_box() (in module
pyauxetic.classes.reentrant2d), 40

create_sketch_reentrant2d_full() (in module
pyauxetic.classes.reentrant2d), 40

create_sketch_reentrant2d_simple() (in module
pyauxetic.classes.reentrant2d), 40

D
data (pyauxetic.classes.auxetic_structure_params.LoadingParams

attribute), 36
define_bcs() (pyaux-

etic.classes.auxetic_structure.AuxeticStructure
method), 31

define_step() (pyaux-
etic.classes.auxetic_structure.AuxeticStructure
method), 31

density (pyauxetic.classes.auxetic_structure_params.MaterialParams
attribute), 35

description (pyauxetic.classes.auxetic_structure_params.JobParams
attribute), 37

diag_strut_angle (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpBox
attribute), 34

diag_strut_angle (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull
attribute), 33

diag_strut_angle (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpSimple

53

PyAuxetic, Release 2.0.1

attribute), 34
diag_strut_length (pyaux-

etic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull
attribute), 33

diag_strut_thickness (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpBox
attribute), 34

diag_strut_thickness (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull
attribute), 33

diag_strut_thickness (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpSimple
attribute), 34

direction (pyauxetic.classes.auxetic_structure_params.LoadingParams
attribute), 36

draw_line() (in module pyauxetic.helper), 41

E
elastic (pyauxetic.classes.auxetic_structure_params.MaterialParams

attribute), 35
elem_code (pyauxetic.classes.auxetic_structure_params.MeshParams

attribute), 37
elem_library (pyaux-

etic.classes.auxetic_structure_params.MeshParams
attribute), 37

elem_shape (pyauxetic.classes.auxetic_structure_params.MeshParams
attribute), 37

explicitPrecision (pyaux-
etic.classes.auxetic_structure_params.JobParams
attribute), 37

export_ribbon_width (pyaux-
etic.classes.auxetic_structure_params.OutputParams
attribute), 38

export_stl (pyauxetic.classes.auxetic_structure_params.OutputParams
attribute), 38

export_stp (pyauxetic.classes.auxetic_structure_params.OutputParams
attribute), 38

extrusion_depth (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpBox
attribute), 34

extrusion_depth (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull
attribute), 33

extrusion_depth (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpSimple
attribute), 34

F
find_edges_from_coords() (in module pyaux-

etic.helper), 41
find_regular_geometries() (in module pyaux-

etic.helper), 42
find_vertices_from_coords() (in module pyaux-

etic.helper), 41

find_vertices_from_coords_minmax() (in module
pyauxetic.helper), 42

formal_names (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpBox
attribute), 34

formal_names (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull
attribute), 33

formal_names (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpSimple
attribute), 34

G
get_box_coords() (in module pyauxetic.helper), 42
get_part_box_size() (in module pyauxetic.helper), 42
get_unit_cell_by_id() (pyaux-

etic.classes.auxetic_structure.AuxeticStructure
method), 30

H
horz_bounding_box (pyaux-

etic.classes.auxetic_unit_cell_params.Reentrant2DUcpBox
attribute), 34

hyperelastic (pyaux-
etic.classes.auxetic_structure_params.MaterialParams
attribute), 36

I
id (pyauxetic.classes.auxetic_unit_cell_params.Reentrant2DUcpBox

attribute), 34
id (pyauxetic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull

attribute), 33
id (pyauxetic.classes.auxetic_unit_cell_params.Reentrant2DUcpSimple

attribute), 35
init_inc_size (pyaux-

etic.classes.auxetic_structure_params.StepParams
attribute), 36

is_bulk (pyauxetic.classes.reentrant2d.Reentrant2DPlanarShellStructure
attribute), 39

is_planar (pyauxetic.classes.reentrant2d.Reentrant2DPlanarShellStructure
attribute), 39

is_shell (pyauxetic.classes.reentrant2d.Reentrant2DPlanarShellStructure
attribute), 39

is_solid (pyauxetic.classes.reentrant2d.Reentrant2DPlanarShellStructure
attribute), 39

is_tubular (pyauxetic.classes.reentrant2d.Reentrant2DPlanarShellStructure
attribute), 39

J
JobParams (class in pyaux-

etic.classes.auxetic_structure_params), 37

54 Index

PyAuxetic, Release 2.0.1

L
LoadingParams (class in pyaux-

etic.classes.auxetic_structure_params), 36

M
main_batch() (in module pyauxetic.main), 28
main_gui_proxy() (in module pyauxetic.main), 28
main_single() (in module pyauxetic.main), 27
MaterialParams (class in pyaux-

etic.classes.auxetic_structure_params), 35
max_inc_size (pyaux-

etic.classes.auxetic_structure_params.StepParams
attribute), 36

max_num_inc (pyauxetic.classes.auxetic_structure_params.StepParams
attribute), 36

memoryPercent (pyaux-
etic.classes.auxetic_structure_params.JobParams
attribute), 37

mesh_part() (pyauxetic.classes.auxetic_structure.AuxeticStructure
method), 31

MeshParams (class in pyaux-
etic.classes.auxetic_structure_params), 37

min_inc_size (pyaux-
etic.classes.auxetic_structure_params.StepParams
attribute), 36

module
pyauxetic.classes.auxetic_structure, 29
pyauxetic.classes.auxetic_structure_params,

35
pyauxetic.classes.auxetic_unit_cell, 28
pyauxetic.classes.auxetic_unit_cell_params,

33
pyauxetic.classes.reentrant2d, 38
pyauxetic.helper, 41
pyauxetic.main, 27

N
nodalOutputPrecision (pyaux-

etic.classes.auxetic_structure_params.JobParams
attribute), 37

num_cell_repeat (pyaux-
etic.classes.auxetic_structure_params.PatternParams
attribute), 35

numCpus (pyauxetic.classes.auxetic_structure_params.JobParams
attribute), 37

O
output_results() (pyaux-

etic.classes.auxetic_structure.AuxeticStructure
method), 32

OutputParams (class in pyaux-
etic.classes.auxetic_structure_params), 38

P
params_class_list (pyaux-

etic.classes.reentrant2d.Reentrant2DUnitCell
attribute), 38

part_3dprint (pyaux-
etic.classes.auxetic_unit_cell.AuxeticUnitCell
property), 28

part_main (pyauxetic.classes.auxetic_unit_cell.AuxeticUnitCell
property), 28

pattern_mode (pyaux-
etic.classes.auxetic_structure_params.PatternParams
attribute), 35

PatternParams (class in pyaux-
etic.classes.auxetic_structure_params), 35

pretty_name (pyauxetic.classes.reentrant2d.Reentrant2DPlanarShellStructure
attribute), 39

pyauxetic.classes.auxetic_structure
module, 29

pyauxetic.classes.auxetic_structure_params
module, 35

pyauxetic.classes.auxetic_unit_cell
module, 28

pyauxetic.classes.auxetic_unit_cell_params
module, 33

pyauxetic.classes.reentrant2d
module, 38

pyauxetic.helper
module, 41

pyauxetic.main
module, 27

R
Reentrant2DPlanarShellStructure (class in pyaux-

etic.classes.reentrant2d), 39
Reentrant2DUcpBox (class in pyaux-

etic.classes.auxetic_unit_cell_params), 34
Reentrant2DUcpFull (class in pyaux-

etic.classes.auxetic_unit_cell_params), 33
Reentrant2DUcpSimple (class in pyaux-

etic.classes.auxetic_unit_cell_params), 34
Reentrant2DUnitCell (class in pyaux-

etic.classes.reentrant2d), 38
result_folder_name (pyaux-

etic.classes.auxetic_structure_params.OutputParams
attribute), 38

return_instance_name() (in module pyaux-
etic.helper), 43

return_results_folder_path() (in module pyaux-
etic.helper), 42

return_sketch_name() (in module pyauxetic.helper),
43

return_unit_cell_name_3dprint() (in module
pyauxetic.helper), 43

Index 55

PyAuxetic, Release 2.0.1

return_unit_cell_name_main() (in module pyaux-
etic.helper), 43

S
save_cae (pyauxetic.classes.auxetic_structure_params.OutputParams

attribute), 38
save_job_files (pyaux-

etic.classes.auxetic_structure_params.OutputParams
attribute), 38

save_odb (pyauxetic.classes.auxetic_structure_params.OutputParams
attribute), 38

seed_size (pyauxetic.classes.auxetic_structure_params.MeshParams
attribute), 37

StepParams (class in pyaux-
etic.classes.auxetic_structure_params), 36

structure_map (pyaux-
etic.classes.auxetic_structure_params.PatternParams
attribute), 35

submit_job() (pyaux-
etic.classes.auxetic_structure.AuxeticStructure
method), 32

T
tail_strut_length (pyaux-

etic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull
attribute), 33

tail_strut_thickness (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull
attribute), 33

time_period (pyauxetic.classes.auxetic_structure_params.StepParams
attribute), 36

transfer_instance_to_zero() (in module pyaux-
etic.helper), 43

type (pyauxetic.classes.auxetic_structure_params.LoadingParams
attribute), 36

U
unit_cell_class (pyaux-

etic.classes.reentrant2d.Reentrant2DPlanarShellStructure
attribute), 39

unit_cell_type (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpBox
attribute), 34

unit_cell_type (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull
attribute), 33

unit_cell_type (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpSimple
attribute), 35

V
vert_bounding_box (pyaux-

etic.classes.auxetic_unit_cell_params.Reentrant2DUcpBox
attribute), 34

vert_strut_length (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull
attribute), 33

vert_strut_length (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpSimple
attribute), 35

vert_strut_thickness (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpBox
attribute), 34

vert_strut_thickness (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpFull
attribute), 33

vert_strut_thickness (pyaux-
etic.classes.auxetic_unit_cell_params.Reentrant2DUcpSimple
attribute), 35

56 Index

	Getting Started
	Installation and Usage
	Installing as a Plugin
	Installing as a Library
	Updating the Software

	Selecting a Structure
	Defining Unit Cells
	Introduction
	Defining Unit Cells using the GUI
	Defining Unit Cells using the API

	Assembling the Unit Cells
	Assembling the Unit Cells using the GUI
	Assembling the Unit Cells using the API

	Different Structure Modes
	Planar Shell Structure
	Overview
	Bounday Conditions
	Special Outputs

	Batch Modeling
	Batch Modeling using the GUI
	Batch Modeling using the API

	Assigning Material Properties
	Assigning Material Properties using the GUI
	Assigning Material Properties using the API

	Adjusting Step Parameters
	Adjusting Step Parameters using the GUI
	Adjusting Step Parameters using the API

	Adjusting Job Parameters
	Adjusting Job Parameters using the GUI
	Adjusting Job Parameters using the API

	Defining Boundary Conditions
	Defining Boundary Conditions using the GUI
	Defining Boundary Conditions using the API

	Meshing the Structure
	Meshing the Structure using the GUI
	Meshing the Structure using the API

	Requesting Output
	Requesting Output using the GUI
	Requesting Output using the API

	Unit Cell Library
	Re-Entrant 2D
	Variants
	Full Parameters
	Bounding Box
	Simplified

	Assembly

	API Reference
	Main Functions
	ABC for Auxetic Unit Cells
	ABC for Auxetic Structures
	Unit Cell Parameters
	Auxetic Structure Parameters
	Classes Based on Different Unit Cells
	Reentrant-2D Unit Cell

	Helper Functions

	Contribute to the Software
	Licensing
	The PyAuxetic Team
	Main Team
	Contributers

	Python Module Index
	Index

